SÉRIES VLA300 ET VLB300

Vannes de commande à bride ESBE pour PN16, DN15-150.

Vannes à 2 voies : VLA325 et VLB325. Vannes à 3 voies : VLA335 et VLB335.

FLUIDE

Ces vannes peuvent être utilisées avec les fluides suivants :

- Eau chaude et froide.
- Eau avec additif antigel tel que le glycol.

Si la vanne est utilisée avec des liquides à des températures inférieures à 0°C, la vanne doit être équipée d'un réchauffeur de presse-étoupe pour éviter la formation de gel sur la tige. Le réchauffeur de presse-étoupe ALF802 est installé sur le point de fixation du servomoteur.

Ces vannes de commande sont utilisées pour contrôler les fluides appartenant au groupe présenté dans le tableau, conformément à l'annexe IV de la directive des équipements sous pression 2014/68/EU (PED), dans les installations de conditionnement d'air, de thermo-ventilation et de chauffage et dans les processus industriels, ce qui ne permet pas de les utiliser comme soupapes de sécurité.

MONTAGE DE LA VANNE

Avant de procéder au montage de la vanne, assurez-vous que les canalisations sont propres et exemptes de scories de soudure. Les canalisations doivent être parfaitement alignées avec le corps de vanne et non soumises à des vibrations. Pour le montage sur des installations avec des fluides à haute température (eau surchauffée), utilisez toujours des joints de dilatation pour éviter que la dilation des canalisations

CARACTÉRISTIQUES TECHNIQUES, DN15-50

VLB325 Bride PN16

VI B335 Bride PN16

n'exerce de pressions sur le corps de vanne.

Installez les vannes avec le servomoteur en position verticale si la température des fluides n'excède pas 120°C. Si les températures sont plus élevées, elles doivent être installées horizontalement.

VANNE DE COMMANDE CONÇUE POUR

- Chauffage
- Climatisation de confort
- Chauffage solaire
- Chauffage urbain Réseau d'eau glacée

SERVOMOTEURS ADAPTÉS

- ALB140
- ALF13x DN15-50
- ALF26x DN15-150

CARACTÉRISTIQUES TECHNIQUES, DN65-150

- ALF36x DN15-150
- ALF46x DN65-150

OPTION DN 15 - 50

Art. N°

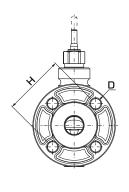
____ Kit d'adaptation, Siemens SQX 26000700

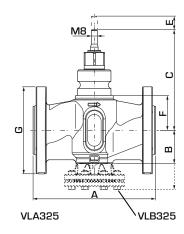
rype :	_ vanne a siege 2 voies et 3 voies
Classe de pression :	PN 16
Caractéristique de débit A-AE	3 :EQM
Caractéristique de débit B-AE	3 :Complémentaire
Course :	20 mm
Plage de réglage Kv/Kv ^{mini} :	voir graphique
Taux de fuite A-AB	Étanche
	Étanche
ΛD :	voir graphique
Tompóraturo du fluido utilicó:	voir graphique maxi +130°C
remperature du naide dunse .	mini -20°C
Fluidas . Fau da abauffa	
	ge (en conformité avec VDI2035)
	Mélanges eau / glycol, max. 50 %
	élanges eau / éthanol, max. 28 %
Connexion :	Bride, ISO 7005-2
Matériau	
	Fonte nodulaire EN-JS 1030
Tige :	Acier inoxydable SS 2346
Bouchon :	Laiton CW602N
	Fonte nodulaire EN-JS 1030
	Laiton CW602N
Étanchéité siège :	
	PTFE/EPDM

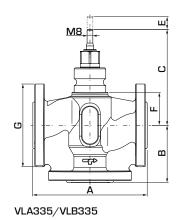
PED 2014/68/EU, article 4.3

Type :	_ Vanne à siège 2 voies et 3 voies
Classe de pression :	PN 16
Caractéristique de débit A-AB	
Caractéristique de débit B-AB	: Linéaire
Course : DN65, 25 mm	
	DN80-150, 45 mm
Plage de réglage Kv/Kv ^{mini} :	>50
Taux de fuite A-AB :	0.03% du Kvs
Taux de fuite B-AB :	2% du Kvs
ΔP _{maxi} :	Mélange, 200 kPa (2 bar)
	Répartition, 70 kPa (0.7 bar)
Température du fluide utilisé : _	maxi +150°C
	mini -10°C
	ge (en conformité avec VDI2035)
	/lélanges eau / glycol, max. 50 %
	elanges eau / éthanol, max. 28 %
Connexion :	Bride, ISO 7005-2
Matériau	
Corps :	
Tige :	Acier inoxydable DIN 1.4305
Bouchon:	Laiton CW617N
Siège :	Grey cast iron EN-JL 1040

(F PED 2014/68/EU, Annexe IV


Étanchéité siège :


Joint de presse-étoupe :



__ Métallique

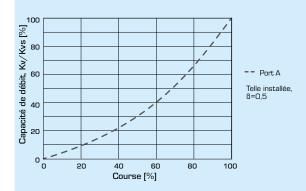
SÉRIES VLA300 ET VLB300

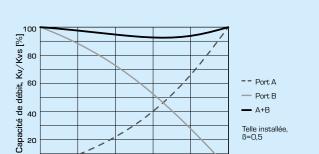
VANNE DE COMMANDE À 2 VOIES, SÉRIES VLA325/VLB325

Art. N°	Référence	DN	Kvs*	Α	В	С	D	Е	F	G	Н	Poids [kg]
21200100		15	1.6	130	42	123	4x14	20	38	95	65	2.1
21200200			2.5									
21200300			4									
21200400	\/I A O O E	20	6.3	150	44	126	4x14	20	41	105	75	2.6
21200500		25	10	160	44	131	4x14	20	46	115	85	3.2
21200600		32	16	180	58	144	4x19	20	60	140	100	4.6
21200700		40	25	200	60	146	4x19	20	61	150	110	5.8
21200800		50	38	230	74	161	4x19	20	76	165	125	8.0
21220100	VLB325	65	63	290	175	155	4x18	25	95	185	145	23.0
21220200		80	100	310	187	165	8x18	45	105	200	160	30.0
21220300		100	130	350	207	176	8x18	45	116.5	220	180	45.6
21220400		125	200	400	234	199	8x18	45	139	250	210	55.0
21220500		150	300	480	277	217	8x22	45	157	285	240	71.0

VANNE DE COMMANDE À 3 VOIES, SÉRIES VLA335/VLB335

Art. N°	Référence	DN	Kvs*	Α	В	С	D	Е	F	G	Н	Poids [kg]
21200900		15	1.6	130	65	123	4x14	20	38	95	65	2.5
21201000			2.5									
21201100			4									
21201200	\/LAGGE	20	6.3	150	75	126	4x14	20	41	105	75	3.2
21201300	3	25	10	160	80	131	4x14	20	46	115	85	3.8
21201400		32	16	180	90	144	4x19	20	60	140	100	6.6
21201500		40	25	200	100	146	4x19	20	61	150	110	7.5
21201600		50	38	230	115	161	4x19	20	76	165	125	10.0
21221100	VLB335	65	63	290	145	155	4x18	25	95	185	145	19.0
21221200		80	100	310	155	165	8x18	45	105	200	160	24.0
21221300		100	130	350	175	176	8x18	45	116.5	220	180	32.0
21221400		125	200	400	200	199	8x18	45	139	250	210	46.0
21221500		150	300	480	240	217	8x22	45	157	285	240	61.0


^{*} Valeur Kvs en m³/h pour une chute de pression de 1 bar.



SÉRIES VLA300 ET VLB300

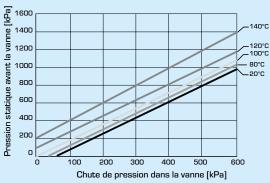
CARACTÉRISTIQUES DE LA VANNE, DN15-50

Vanne 2 voies, DN15-50

Course [%]

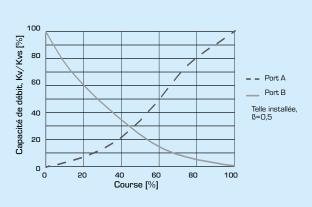
80

100

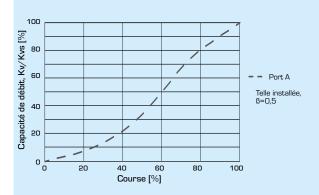

Telle installée, β=0,5

Vanne 3 voies, DN15-50

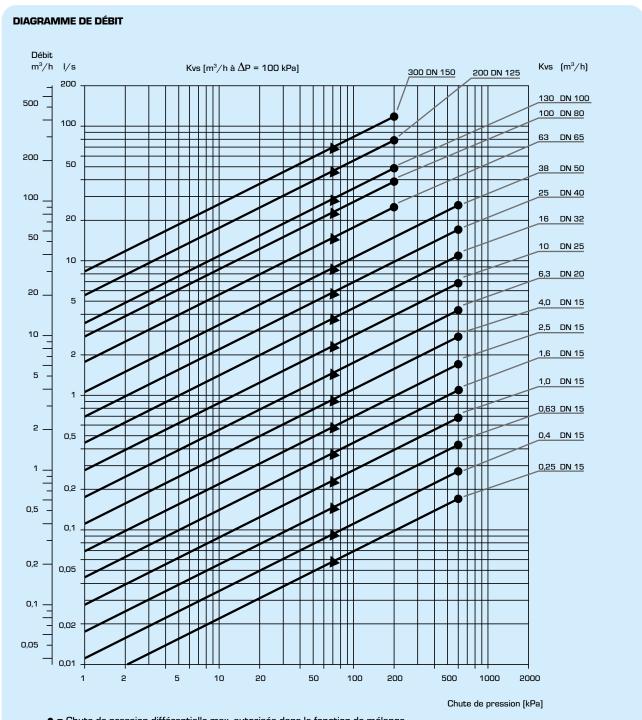
20


0 |

CARACTERISTIQUES DE CHUTE DE PRESSION DIFFERENTIELLE, DN15-50 (mélange)


Seuil de chute de pression au-delà duquel une cavitation risque de survenir. Dépend de la pression d'admission de la vanne et de la température de l'eau.

Vanne 3 voies, DN65-150



CARACTÉRISTIQUES DE LA VANNE, DN65-150

Vanne 2 voies, DN65-150

SÉRIES VLA300 ET VLB300

- = Chute de pression différentielle max. autorisée dans la fonction de mélange
- ▲ = Chute de pression différentielle max. autorisée dans la fonction de dérivation

Attention : Comme la viscosité et la conduction thermique sont altérées par l'ajout de glycol dans le circuit d'eau, ce critère doit être pris en considération lorsque vous choisissez la vanne. Une bonne règle consiste à choisir une valeur Kv supérieure lorsque 30 – 50 % de glycol sont rajoutés. Une concentration plus faible de glycol ne modifie rien.

N.B. ! Un maximum de 50 % d'additif de glycol est autorisé pour la protection antigel et l'absorption d'oxygène.

SÉRIES VLA300 ET VLB300

INSTALLATION

La vanne doit être montée dans le sens du débit indiqué sur le corps de la vanne.

Si possible, elle doit être montée sur le retour, pour éviter d'exposer le servomoteur à des hautes températures.

La vanne doit être installée avec le servomoteur monté au dessus.

Mounting positions:

- A = Position de montage autorisée pour une température de liquide entre -20°C et +120°C.
- B = Position de montage autorisée pour une température

de liquide entre 0°C et +150°C.. C = Position de montage non autorisée.

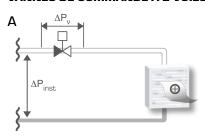
AUTORITÉ DE VANNE [β]

 Δp_{v} - pertes de pression sur la vanne [bar]

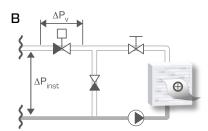
 $\Delta p_{_{sys}}$ – pertes de pression sur le système avec débit variable [bar]

 Δp_{inst} - pertes de pression sur l'installation [bar]

Recommandations : L'autorité de vanne [β] doit se trouver entre 0,3 et 0,7

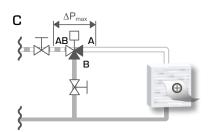

a) vanne à 2 voies

$$\beta = \frac{\Delta p_{v}}{\Delta p_{v} + \Delta p_{inst}}$$

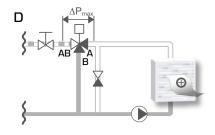

$$\beta = \frac{\Delta p_{v}}{\Delta p_{v} + \Delta p_{eve}}$$

EXEMPLES D'INSTALLATION

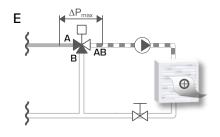
VANNES DE COMMANDE À 2 VOIES



Installation sans circulateur local



Installation avec circulateur local


VANNES DE COMMANDE À 3 VOIES

Installation sans circulateur local

Installation avec circulateur local

Installation avec circulateur local

Pour s'assurer que des impuretés solides ne restent

mise en place de la vanne.

A Fluide T -20°C...

bloquées entre le siège et le clapet, un filtre doit être placé en

amont de la vanne et l'installation doit être rincée avant la

